Sea Level Change: Sea Level Rise and Infrastructure Planning

December 11, 2020
APA Hazard Mitigation and Disaster Recovery Division

Matt Campo, Senior Research Specialist, Rutgers
Nicole Faghin, Coastal Management Specialist
Washington Sea Grant
Welcome to APA Hazard Division

apa.hmdr@gmail.com
Sea Level Rise and Planning Series
2020 - 2021

WEBINAR 1: Sea Level Rise 101: How to Select and Use Sea Level Rise Data for Planning and Policy Decisions

WEBINAR 2: Integrating Sea Level Rise into Plans

WEBINAR 3: Coastal Hazard Zones, Best management practices, permitting and planning

PLANNING WEBCAST SERIES YouTube Channel
An introduction

Nicole Faghin, Washington Sea Grant
What we covered in the first webinar

Components of sea level change
Scenario vs Probabilistic models
Example from Washington State
Tools

Link for our first webinar:
https://www.youtube.com/watch?v=qpFbcf5Mgpw&feature=youtu.be
What we covered in the second webinar
Using sea level rise projections in planning processes

Link for our second webinar:
https://www.youtube.com/watch?v=PdezO76Sbmg&t=1614s
What we covered in the third webinar

Using Hazard Zones to address future conditions

Link for our third webinar:
https://www.youtube.com/watch?v=EqN2Coe3HZc
WEBINAR 4: Sea Level Rise and Infrastructure Planning
PLANNING FOR INFRASTRUCTURE RESILIENCE

Joseph DeAngelis, AICP, Haley Briel, and Michael Lauer, AICP
DEFINITIONS
What is a CIP?

Capital Improvement Plan is a community planning and fiscal management plan used to coordinate the location, timing and financing of multiple projects over a multi-year period.

(Washington State Term: Capital Facilities Plan)

Contrast to Capital Improvement Project which is an individual Infrastructure project considered annually.
What is Infrastructure?

Publicly funded projects including transportation investments, water and wastewater, and coastal defenses/hazard mitigation structures.
The Capital Improvement Plan

1. Organize the CIP
2. Identify Projects and Funding Options
3. Prepare and Recommend the CIP
4. Adopt the Capital Budget

How and where to address sea level rise?
And what role for planners?

Individual Project Process
4 Big Disconnects...
DISCONNECT #1

Community Planners

Infrastructure Planning
DISCONNECT #2

Climate adaptation plans

Infrastructure Plans
DISCONNECT #3 (not this webinar)

Climate adaptation plans

Infrastructure implementation
DISCONNECT #4

Climate change science / Plans and planning
STEP 1
Inventory infrastructure

STEP 2
Identify future flood risks

STEP 3
Determine exposure, sensitivity, adaptive capacity, and timeline of concern

STEP 4
Develop a plan for adaptation
Issues for CIPs and SLR

Criteria
Funding Sources
Planning horizons and life cycles
Plan Coordination
Planning as driver or follower
Introduction of our guest speakers

Susan Clark, Olympia, WA
Rhonda Haag, Monroe County, FLA
Role of Planners in Sea Level Rise Response Planning

December 11, 2020
We Have A Plan!

The following is available on olympiawa.gov/slr:

- Final SLR Plan
- Story Maps
- Planning Framework
- Climate Science Review
- Vulnerability and Risk Assessment
Today’s Agenda

• Where’s Olympia?
• Planning Context
• Planner’s Role
• Implementation
Where is Olympia & What is Unique About it?
Focused on Downtown Olympia
Olympia Flooding Dynamics

• High tides
• High river flows
• Backflow through stormwater system
Phased Response

• Immediate (0-5 years): 2020-2025
 [<6” SLR]

• Mid-Term (5-30 years): 2025-2050
 [13-25” SLR]

• Long-Term (30+ years): 2050 and beyond
 [36-68” SLR]
Adaptation Strategies Types

Physical / Infrastructure
(Addresses physical vulnerabilities)

Example:
Raise Percival Landing Park to protect inland areas from flooding

Operational
(Responds to physical vulnerabilities)

Example:
Traffic detour during flood event

Governance
(Addresses policy, plans, overarching guidance documents)

Example:
Update design standards to incorporate SLR considerations

Informational
(Addresses initiatives, knowledge gaps)

Example:
City, LOTT, Port
Conduct study to better understand effect of elevated groundwater on stormwater and sewer system
Percival Landing Mid-Term Strategies for 24” SLR

- Raised planters
- Flood gates
- Wall
- Raise wall
- Berm
- Elevated path
The proposed sea level rise adaption strategies are expected to be compatible with the long term management options for Capitol Lake/Lower Deschutes Watershed.
Planning Context
Washington State Growth Management Act

Washington State law that requires state and local governments to manage Washington’s growth by identifying and protecting critical areas and natural resource lands, designating urban growth areas, preparing comprehensive plans and implementing them through capital investments and development regulations. This approach to growth management is unique among states.

Policy & Planning Goals

2010 Sea Level Rise Policy
- The City is committed to protecting Downtown from the impacts of SLR
- The City will seek to understand the implications of potential 100-year sea rise of 50 inches
- Incorporate adaptation and flexibility into both public and private infrastructure projects
- Seek opportunities to maintain control of valuable shoreline

2014 Comprehensive Plan Goal
The City uses best available information to implement a sea level rise management plan that will protect Olympia’s downtown.

2016 Sea Level Rise Development Code
Elevate or floodproof 2 feet above 100-year flood

2017 Downtown Strategy
- A vibrant, attractive regional destination
- Full of distinctive pedestrian-oriented places and spaces
- A mixture of urban housing options
- A home for a variety of businesses
- A place to connect with out culture and historic fabric, and
- Protected from the effects of sea level rise
How Was The Plan Developed?
City of Olympia Storm and Surface Water Utility’s mission is to reduce flooding, improve water quality, and protect and enhance aquatic habitat in Olympia.
Sea Level Rise Response Plan

What is Impacted?
Utility Planning

- Storm and Surface Water Plan 2018
- DRAFT Wastewater Management Plan August 2019
- 2015-2020 Water System Plan August Draft
Next Steps - Implementation
Potential Total Costs and Phasing

<table>
<thead>
<tr>
<th>Area / Strategy</th>
<th>Near-Term (0-5 years) Sea Level Rise: up to 6 inches</th>
<th>Mid-Term (5-30 years) Sea Level Rise: up to 24 inches</th>
<th>Long-term (30+ years) Sea Level Rise: up to 68 inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitol Lake / Lower Deschutes Watershed</td>
<td>$0.2M</td>
<td>$3M to $6M</td>
<td>$3M to $118M</td>
</tr>
<tr>
<td>Percival Landing and Isthmus</td>
<td>-</td>
<td>$11M to $13.5M</td>
<td>$85M to $105M</td>
</tr>
<tr>
<td>Budd Inlet Treatment Plant</td>
<td>-</td>
<td>$1M to $6M</td>
<td>$12.5 to $15M</td>
</tr>
<tr>
<td>Port of Olympia Peninsula</td>
<td>$20K</td>
<td>$0.5M to $1M</td>
<td>$8M to $9.5M</td>
</tr>
<tr>
<td>Stormwater System</td>
<td>$1M</td>
<td>-</td>
<td>$82.5M to $100.5M</td>
</tr>
<tr>
<td>Total</td>
<td>$1.25M</td>
<td>$16M to $26M</td>
<td>$190M to $350M</td>
</tr>
</tbody>
</table>
Olympia Sea Level Rise Response Collaborative

Initial Members
– City of Olympia
– LOTT Clean Water Alliance
– Port of Olympia

Invitees
– Squaxin Island Tribe
– WA State Department of Ecology
– WA State Department of Enterprise Services
Olympia Sea Level Rise Response Collaborative

Work Plan

- Adopt a strategic plan
- Prioritize projects and studies
- Identify funding opportunities
 - FEMA
 - NOAA
 - Bloomberg
Climate Change & Sea Level Rise in the Florida Keys: Monroe County Begins to Bridge the Gap with Roads Elevation

Sea Level Rise and Infrastructure Capital Facilities Planning
Friday December 11, 2020,
10:00 AM - 11:30 AM PST
1:00 PM - 2:30 PM EST.

Presented by Rhonda Haag
Chief Resilience Officer
Monroe County, FL
Agenda

1. Location of Project
2. Background on County’s Resiliency and Climate Program and Key Issues related to Sea Level Rise
3. Local Infrastructure Adaptations and How Sea Level Rise is Being Addressed
4. Role of planners in the planning process as it relates to Sea Level Rise adaptation efforts

Kristen Key Szpak, 10/19/20
Location: Monroe County, Florida “Florida Keys”

Roadway Vulnerability Study
Help make the Florida Keys island chain more resilient to sea level rise.
Why the Urgency? Key Issues

82 Days Underwater: The Tide Is High, but They’re Holding On
A brutal “king tide” season made worse by climate change has flooded the streets of a Florida Keys community for nearly three months.

Key Largo – Stillwright Point (85 days)

Key Largo – Twin Lakes

Big Pine

Rose Marie Cromwell for The New York Times
© Kim Weatherly
Monroe County, Florida Among Most Vulnerable Counties in Nation

<table>
<thead>
<tr>
<th>Rank</th>
<th>County</th>
<th>Population Displaced</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tyrell, NC</td>
<td>45%</td>
</tr>
<tr>
<td>2.</td>
<td>Hyde, NC</td>
<td>42%</td>
</tr>
<tr>
<td>3.</td>
<td>Monroe, FL</td>
<td>36%</td>
</tr>
<tr>
<td>4.</td>
<td>Dare, NC</td>
<td>21%</td>
</tr>
<tr>
<td>5.</td>
<td>Currituck, NC</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Miami-Dade, FL</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td>Broward, FL</td>
<td>1%</td>
</tr>
</tbody>
</table>

Land that’s dry now that will go under water by 2060 in relation to the number of people living there

National-scale analysis of over 300 coastal counties Matthew Hauer, Applied Demography Program, University of Georgia
King Tides
Fall 2015 and 2016
Fall 2019-2020
King Tides
Sea Level Rise Planning Process to Date

1. County’s sea level rise planning launched in 2016: GreenKeys
 - 5-year work plan, 165 recommendations
 - Recommendations included:
 • Amendments to Comprehensive Plan
 • Pilot Roads Projects
 • Improve elevation data
 • Engineering level analysis of transportation impacts countywide

2. Energy and Climate Element of Comprehensive Plan (2016)

3. Pilot Road Elevation Projects (Big Pine and Twin Lakes) initiated in 2016 and design/permits completed 2020

4. New Roads Mobile LiDAR elevation data (2019 completed)

5. Grants for SLR planning
Sea Level Rise Planning In Process

1. Roads Adaptation Plan (launched 2019)
 - Identify sea level rise impacts to roads and drainage comprehensively
 - Develop Ranking Criteria –with Planners assistance
 - Identify policy options –with Planners assistance
 - Develop engineering alternatives and Implementation Plan

2. Vulnerability Assessment for other County non-road assets being updated separately for habitat, buildings, and infrastructure

3. Comprehensive Plan (2021 initiate update)
 - Peril of Flood amendments to address State requirements (drafted, RPG 2019)
 - Adaptation Action Areas (in process RPG 2020)
 - Other amendments as necessary
Increasing Projected Water Levels Throughout County...

SLR Condition: NOAA 2017 Intermediate-High

- **Year 2020** Water Level
- **Year 2045** Water Level: +13 Inches Increase
- **Year 2060** Water Level: +11 Inches Increase
- **Year 2100** Water Level: +43 Inches Increase

5.58’ Increase in 80 years!
Monroe County Roadway Vulnerability Study

Increasing Projected Water Levels Throughout County…

SLR Condition: NOAA 2017 Intermediate-High + King Tides

2035
2.0' of depth

2045
2.5' of depth

2060
3.5' of depth
Monroe County Roadway Vulnerability Study

How Sea Level Rise is Being Addressed

Increasing Projected Water Levels Throughout County…

SLR Condition: NOAA 2017 Intermediate-High + King Tides

$1.8 Billion*

<table>
<thead>
<tr>
<th>Projected SLR + King Tides will affect the following:</th>
<th>2045</th>
<th>Unincorporated Countywide %</th>
<th>2060</th>
<th>Unincorporated Countywide %</th>
<th>2100</th>
<th>Unincorporated Countywide %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles of Vulnerable and Critical County Maintained Roadways</td>
<td>152 MI</td>
<td>49%</td>
<td>206 MI</td>
<td>66%</td>
<td>252 MI</td>
<td>81%</td>
</tr>
<tr>
<td># of Residential Units along County Maintained Roadways</td>
<td>12,585 Res. Units</td>
<td>71%</td>
<td>14,501 Res. Units</td>
<td>82%</td>
<td>16,370 Res. Units</td>
<td>92%</td>
</tr>
</tbody>
</table>

311 Total Road Miles **County Wide**

Cost estimate is conceptual and assumes reconstruction of the roadway and use of an injection well system. Cost estimates do not include design, right-of-way acquisition, harmonization/cost to cure, and legal fees. Cost estimates are preliminary and subject to change.
What is vulnerability?

What is criticality?
Monroe County Roadway Vulnerability Study

Step 1: Vulnerability Assessment

1. Groundwater Clearance
2. Surface Inundation Depth (SLR)
3. Storm Surge
4. Surface Wave Impact Potential
5. Roadway Existing Pavement Condition
Monroe County Roadway Vulnerability Study

Step 1: Vulnerability Assessment – What did it reveal?

Old State Rd 4A (SLR Projection + King Tide measured from Roadway Surface Elevation)
Monroe County Roadway Vulnerability Study

Step 2: Criticality Assessment

1. Vulnerability Score
2. Number of Residential Units
3. Roadways Associated with Critical Facilities
Step 2: Criticality Assessment (Cont.)

4. Commercial Buildings

5. Threatened, Endangered and Focus Species

6. Wetlands/Natural Habitats

7. Roadway Functional Classification and Evacuation Route
Monroe County Roadway Vulnerability Study

Planners Recommended Criteria and Weight Factors to Rank Roads for Vulnerability

STEP 1

<table>
<thead>
<tr>
<th>Vulnerability Evaluation Factors</th>
<th>Weighting Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roadway Surface Inundation Depth</td>
<td>60%</td>
</tr>
<tr>
<td>Roadway Groundwater Clearance</td>
<td>25%</td>
</tr>
<tr>
<td>Roadway Inundation Due to Storm Surge</td>
<td>5%</td>
</tr>
<tr>
<td>Roadway Surface Wave Impact Potential</td>
<td>5%</td>
</tr>
<tr>
<td>Roadway Existing Pavement Condition</td>
<td>5%</td>
</tr>
</tbody>
</table>

Criteria and Weights will Affect How Roads Are Ranked for Elevation

STEP 2

<table>
<thead>
<tr>
<th>Criticality Evaluation Factors</th>
<th>Weighting Percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vulnerability Score</td>
<td>50%</td>
</tr>
<tr>
<td>Number of Residential Units</td>
<td>25%</td>
</tr>
<tr>
<td>Roads Associated with Critical Facilities (Police, Fire, Hospital)</td>
<td>10%</td>
</tr>
<tr>
<td>Wetlands/Natural Habitats associated with Road Segment</td>
<td>5%</td>
</tr>
<tr>
<td>Roadway Functional Classification and Evacuation Routes</td>
<td>5%</td>
</tr>
<tr>
<td>Non-Residential Parcel Building Size (Commercial Buildings)</td>
<td>3%</td>
</tr>
<tr>
<td>T&E and Focus Species associated with Road Segment</td>
<td>2%</td>
</tr>
</tbody>
</table>
Planning Process for Roads Adaptation

Data collection
Review Compact’s 25 year SLR (useful life) projections & King Tide predictions for future impacts

![Diagram](image)

1- Initial Technical Evaluation

- **Planning Input**
 - Vulnerability Evaluation
 - Criticality Evaluation

- **Initial** 25% of road segments move to Engineering Concept and Policy Evaluation based on Vulnerability + Criticality-
 - * All County roads analyzed, but remaining 75% to receive later Concept & Policy Evaluation
Planning Process for Roads Adaptation

Data collection
Review Compact’s 25 year SLR (useful life) projections & King Tide predictions for future impacts

Planning Input
- Vulnerability Evaluation
- Criticality Evaluation

Initial 25% of road segments move to Engineering Concept and Policy Evaluation based on Vulnerability + Criticality - *All County roads analyzed, but remaining 75% to receive later Concept & Policy Evaluation

Further Evaluation with Planning Input Considerations could include: Level of Service, cost effectiveness, affordable housing issues, access, staging efficiency + other factors depending on road project

Engineering Concept Evaluation = Preliminary Design & Conceptual $$$

2- Policy and Economic Evaluation

Board Presentation November 2020
Planning Process for Roads Adaptation

Data collection
Review Compact’s 25 year SLR (useful life) projections & King Tide predictions for future impacts

Initial 25% of road segments move to Engineering Concept and Policy Evaluation based on Vulnerability + Criticality - * All County roads analyzed, but remaining 75% to receive later Concept & Policy Evaluation

Further Evaluation with Planning Input
Considerations could include: Level of Service, cost effectiveness, affordable housing issues, access, staging efficiency + other factors depending on road project

Engineering Concept Evaluation = Preliminary Design & Conceptual $$$

Draft Roads Adaptation Plan & Implementation Strategy
* New projects in remaining 75% added as reviews completed

Board Approval (Fall 2021)
Roads Adaptation Plan and Implementation Strategy

After Fall 2021 = Implementation
Detailed design, project permitting/implementation and funding
Aligning Comprehensive Plan
Policy Initiatives: EAR 5/1/21

<table>
<thead>
<tr>
<th>Initiatives</th>
<th>Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy and Climate Element</td>
<td></td>
</tr>
<tr>
<td>Updating now to incorporate all climate planning initiatives</td>
<td>2013 Completed</td>
</tr>
<tr>
<td>To be finalized in Evaluation and Appraisal Report based Comp</td>
<td>In process (RPG)</td>
</tr>
<tr>
<td>Plan amendments</td>
<td>2020-2021</td>
</tr>
<tr>
<td>Peril of Flood Amendments</td>
<td></td>
</tr>
<tr>
<td>To be finalized in Evaluation and Appraisal Report based Comp</td>
<td>Drafted (RPG)</td>
</tr>
<tr>
<td>Plan amendments</td>
<td>2020-2021</td>
</tr>
<tr>
<td>Overall Integration of Sea Level Rise into other Comp Plan</td>
<td>Drafted (RPG)</td>
</tr>
<tr>
<td>Elements</td>
<td>2020-2021</td>
</tr>
<tr>
<td>To be finalized in Evaluation and Appraisal Report based Comp</td>
<td></td>
</tr>
<tr>
<td>Plan amendments</td>
<td></td>
</tr>
<tr>
<td>Stormwater Policy Implementation</td>
<td>In process (DEO Grant)</td>
</tr>
<tr>
<td>Policy 1001.1.3 & 1001.1.6: Updating stormwater management</td>
<td></td>
</tr>
<tr>
<td>regulations & inventory and analysis of existing public</td>
<td></td>
</tr>
<tr>
<td>drainage facilities</td>
<td></td>
</tr>
</tbody>
</table>
Identifying the Issues for Future Comprehensive Plan Updates

1) Integration of Countywide Roads Study into capital improvements planning process
2) Updating other vulnerability work beyond roads/stormwater to form the basis for establishing adaptation action areas
3) Assessment of shorelines and policies (natural and hardening)
4) Remaining growth in the Keys (2026) and vulnerable neighborhoods
5) ROGO and transfer of development rights (evaluation of sea level rise vulnerability)
6) Framing infrastructure commitments (deficiencies, maintenance and growth/expansion)
7) Land acquisition and evaluation of sea level rise
8) Maintaining access for recreation and open space
9) Disaster recovery and rebuilding more resiliently
Planning Decisions to Develop Roads and Flood Mitigation Implementation Strategy

- **Planning Decision Framework of Adaptation Approaches**
 - **Analysis of Future Growth**
 - Where is the remaining growth (and demand for services) going to go?
 - **Level of Service issues**
 - Differing levels of service across neighborhoods
 - Case studies related to “natural hazards” and government providing services (i.e., flooding, snow plowing, fire management, etc.)
 - **“Road Maintenance”**
 - County obligations to maintain roads and authority to upgrade

- **Implementation strategies:**
 - Comprehensive Plan, Ordinances, Code, Special Districts/MSBU, etc.
County Adaptation + Parcel Adaptation

Countywide Adaptation
- Roads
- Habitat/Resources
- Elevate or mitigate County buildings
- Infrastructure

Private Property Response
- Elevate or mitigate private structures
- Lot fill and driveways
 - Shorelines
- Comp Plan Amendments Required

Achieving Resilience
- County
- People
- Habitat
- Economy
Sample Adaptation Implementation Strategies for Communities

<table>
<thead>
<tr>
<th>Public- Road elevation & flood mitigation</th>
<th>Comprehensive Plan</th>
<th>LDRs & Other Code provisions</th>
<th>Local Govt. Capital Improvement Funding</th>
<th>Private Property Owner Funding (assessments or other sources)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X (Design standards)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
How Are Other Communities Implementing Resilience for Infrastructure or Allowing Private Property Adaptation?

<table>
<thead>
<tr>
<th>Sample Adaptation Implementation Strategies for Communities</th>
<th>Comprehensive Plan</th>
<th>LDRs & Other Code provisions</th>
<th>Local Govt. Capital Improvement Funding</th>
<th>Private Property Owner Funding (assessments or other sources)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public- Road elevation & flood mitigation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Design standards)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private property- Shoreline, fill & driveways, etc.</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Site development)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How Communities Are Implementing Resilience for Infrastructure or Allowing Private Property Adaptation

<table>
<thead>
<tr>
<th>Sample Adaptation Implementation Strategies for Communities</th>
<th>Comprehensive Plan</th>
<th>LDRs & Other Code provisions</th>
<th>Local Govt. Capital Improvement Funding</th>
<th>Private Property Owner Funding (assessments or other sources)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public- Road elevation & flood mitigation</td>
<td>X</td>
<td>X (Design standards)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Private property- Shoreline, fill & driveways, etc.</td>
<td>X</td>
<td>X (Site development)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Public or private property- Available lands for road adaptation, management of acquired lands and vacant parcels where flooding crosses onto roads</td>
<td>X</td>
<td>X (Uses/Mgmt. of lands)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Thank You

Haag-Rhonda
@MonroeCounty-Fl.gov
QUESTIONS?
Contact information

Matt Campo, Senior Research Specialist, Rutgers, NJ
mcampo@ejb.rutgers.edu

Nicole Faghin, Coastal Management Specialist, Washington Sea Grant, Seattle, WA
faghan@uw.edu

Susan Clark, Engineering and Planning Supervisor, Public Works, Olympia, WA
sclark@ci.olympia.wa.us

Rhonda Haag, Chief Resilience Officer, Monroe County, FLA
Haag-Rhonda@monroecounty-fl.gov
THANK YOU FOR JOINING US!

Matt and Nicole